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Abstract

This is a quick calculation to see how eddy currents will affect our design. There are at least

two phenomena to consider (a) heating (b) B-fields generated by eddy currents that will reduce

the generating field. In the geometry I am considering, I am going to assume that everything is

thin, i.e. both the wall of the end plate and the wall of the tube that encloses the ferrites are thin

when compared to the skin depth. Without this assumption, I can compare the heating and the

behaviour of the B-field between the disk and the tube due to eddy currents.
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I. INTRODUCTION

There are two major problems with eddy currents generated by the solenoidal ramp

• Heating by the eddy currents

• Slow down of the ramp because of the B-field generated by the eddy currents, i.e.

there is a diffusion time constant that comes from solving the diffusion equation of the

magnetic vector potential. See for example Knoepfel [1].

II. THEORY

I am going to partition the problem into two parts:

• Eddy currents that are on the end walls. I will assume that the end wall is a disk.

• Eddy currents that flow on the tube. I will calculate this for an infinitely long thin

walled tube. This should be ok because if the wall is thin, there is negligible effect on

the B-field that penetrates the tube transversely on this face.

See Fig. 1.
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FIG. 1. The long tube of length L with wall thickness ∆ has an end plate. The end plate is a

disk of radius R and thickness h. The changing magnetic field Bz is normal to the disk face and is

parallel to the tube wall.
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But first, let me calculate the skin depth for copper so that I can see whether the ap-

proximations that I will use later is valid. The skin depth is given by the formula

δ =
1√

πfµσ
(1)

where δ is the skin depth in m, f is the frequency in Hz, µ is the permeability of the material

in H/m, and σ is the electrical conductivity in S/m.

For copper, µ = 1.256× 10−6 H/m, σ = 5.96× 107 S/m and f = 15 Hz, I get

δCu = 1.7 cm (2)

A. Eddy currents flowing in a disk

I am going to look at how the effect of eddy currents in the disk shown in Fig. 2 first.

The accurate calculation of eddy currents for a disk that has thickness comparable to the

skin depth is actually rather involved. See for example [2, 3]. However, I can get a good

approximation of the effect if I assume that h ≪ δ, i.e. the current density is constant in

the disk. I can calculate the current in this case by using the integral form of Faraday’s

Law. (c.f. Knoepfel (page 211)[1], who gets the same answer as I do by solving a a rather

complicated partial differential equation.)
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FIG. 2. The end wall of the structure shown in Fig. 1. The integral path is a circle of radius r

that encloses the hatched area A.

∮
E · dℓ = − d

dt

∫
A

B · dA (3)
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In the case that I am considering, the closed path integral of E is around a circle of radius

r and the enclosed area is A. The disk area does not change and so the only time varying

term on the rhs is contained in B. I can perform the integral easily to get

2πrEθ = −Ḃzπr
2

∴ Eθ = −1

2
Ḃzr (4)

where Eθ is the azimuthal component of the E-field.

Let me suppose that the disk is made of a material that has conductivity σ, then from

Ohm’s Law, I have

jθ = σEθ = −1

2
σḂzr (5)

where jθ is the current density that is flowing in the hatched circle shown in Fig. 2.

Hence the current dIθ that flows between r and r + dr is

dIθ = jθ × (h dr) = −1

2
σḂzhr dr (6)

where I have assumed that the skin depth is much larger than h.

Thus, the total current Iθ that flows from 0 to R is

Iθ = −1

2
σḂzh

∫ R

0

r dr = −1

4
σḂzhR

2 (7)

The consequence of Iθ is that there is heating of the disk and a B-field that is pointing in

the opposite direction to Bz. I will consider these consequences in the next two subsections.

1. Power loss from heating

The power loss in the cross sectional area a = h dr is

dPdisk =

(
2πr

σa

)
× dI2θ =

(
2πr

σa

)
×

(
1

2
σḂzar

)2

(8)

because the resistance the current sees in the circular path that it travels is 2πr/σa and, of

course, the power loss simply comes from given by I2R.

When I integrate the above, I get the total power loss Pdisk due to eddy currents flowing

in this disk

Pdisk =
π

2
σḂ2

zh

∫ R

0

r3 dr =
π

8
σḂ2

zhR
4 (9)
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The scaling to the 4th power of R is definitely something we need to take into account

in the cavity shell design! Note that Eq. 9 is the instantaneous power loss. I can perform

another time integral to get the average power loss over 1 cycle if Bz is periodic. But I’m

leaving this as is for now.

2. Magnetic field reduction

I can use the Biot-Savart Law to calculate the field B′ that arises to the eddy current Iθ.

For simplicity, I will only calculate the B′ along the z axis that passes throught the centre

of the disk. See Fig. 3. To calculate B′
z, I start with a current loop dIθ that flows around a

loop of radius r that generates the dB′
z field

dB′
z =

µ0

4π

(∫
C

(dIθ)dℓ× ρ

ρ3

)
z

=
µ0

2

r2

(r2 + z2)3/2
dIθ (10)

= −µ0

4
σḂzh

r3

(r2 + z2)3/2
dr (11)

where ρ is the vector from the loop to the point of interest. In this special case, both dB′
θ

and dB′
r are zero at the point P shown in Fig. 3 by symmetry.
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FIG. 3. The B-field is calculated at point P due to the eddy current dIθ flowing in the disk. ρ is

the vector that goes from the current contribution dℓ in the loop to P .
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To get the total contribution to B′
z, I have to perform the integral from 0 to R to get

B′
z = −µ0

4
σḂzh

∫ R

0

dr
r3

(r2 + z2)3/2

= −µ0

4
σḂzh

(
z −

√
R2 + z2

)2
√
R2 + z2

(12)

Right at the centre of the disk z = 0, the eddy currents reduce Bz by

B′
z(z = 0) = −µ0

4
σḂzhR (13)

B. Eddy currents flowing in a tube

The calculation of the eddy currents flowing around the tube that has a finite length and

thickness is complicated. Rather than slog away with this geometry, I will use the infinitely

long thin shell approximation instead which is a lot easier. In this approximation, I am

ignoring the transverse edges (i.e. the part that connects to the disk shown in Fig. 1) and

∆ ≪ δ so that the current density is constant within the shell. I think this approximation

is ok because for a thin enough wall, the effect on Bz at the transverse edge is negligible.

I can use the same current density equation Eq. 5 as before, but with r = R

jθ = −1

2
σḂi

zR (14)

And note that in the thin shell approximation, jθ is constant in the shell, the current that

is flowing is simply given by

dIθ = jθ × (∆ dz) = −1

2
σḂi

zR∆ dz (15)

1. Power losses from heating

The power loss in the cross sectional area a = ∆ dz is

dPtube =

(
2πR

σa

)
× dI2θ =

(
2πR

σa

)
×

(
1

2
σḂi

ZRa

)2

=
π

2
σ
(
Ḃi

z

)2

R3∆ dz (16)

Hence, the instantaneous total power loss over length L is

Ptube =
π

2
σ
(
Ḃi

z

)2

R3L∆ (17)
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FIG. 4. The tube shown here has been made infinite in length so that there are no transverse faces

in the problem. The integral path is a circle of radius R that encloses the hatched area A. δ is the

skin depth. Note that I have partitioned Bz into two parts because the wall causes a retardation

of the drive field Bo
z .

Notice that the losses is linearly dependent on the thickness of the tube ∆ and is only to

the third power in R.

2. Magnetic field diffusion time

From Ampere’s Law, I can integrate around the closed loop shown in Fig. 4 to get

∮
B · dℓ = µ0

∫
S

j · dS

⇒ Bi
z −Bo

z = µ0jθ ×∆ (18)
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because the L’s cancel on both sides. I can substitute in jθ from Eq. 14 into the above to

get

Bi
z −Bo

z = −
(
1

2
µ0σR∆

)
Ḃi

z

⇒ Ḃi
z +

Bi
z

τ
=

Bo
z

τ
(19)

where τ = µ0σR∆/2.
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FIG. 5. Ampere’s Law is used to integrate around the loop (shown as dashed rectangle) of length

L.

Bo
z is the drive field and I will solve Eq. 19 for a drive field that is a step function

Bo
z = u(t)Bz (20)

where Bz is a constant magnetic field and u(t) is the Heaviside operator. With this drive

and the initial condition Bi
z = 0 at t = 0, the first order differential equation is easily solved

using Laplace transforms. The solution is

Bi
z(t) = Bz

(
1− e−t/τ

)
(21)

Thus, the 1/e time is τ which I will call the diffusion time. (Note: I get the same result as

Haus et al [4], example 10.3.1.)
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III. COMPARING EDDY CURRENT EFFECTS BETWEEN THE DISK AND

THE TUBE

The effect of the eddy current on the heating and magnetic field reduction between the

disk and the tube will be considered here.

A. Heating effects

Now, I want to compare the heating between the disk and the tube. This is easy to do if

I compare the maximum instantaneous power between the two geometries and also assume

that the maximum values of Ḃz used in Eq. 9 and Ḃi
z used in Eq. 17 are equal, then I can

write down the ratio (
Ptube

Pdisk

)
max

=
4L∆

hR
(22)

Therefore, for the losses on the tube be much smaller than the disk, I have the following

inequality

L∆ ≪ hR/4 (23)

And I can choose the thickness of the shell ∆ = h/4, and the inequality becomes

L ≪ R (24)

Unfortunately, in our geometry, L is about the same size as R and so the heating in the

tube can be just as much as the disk!

B. Magnetic field reduction

For the disk, the eddy current reduces the size of the drive field Bz by −µ0σḂzhR/4 at

the centre of the disk. Therefore a thinner disk or lower conductivity metal will reduce this

effect.

For the tube, there is a 1/e time given by τ = µ0σR∆/2. This can reparametrized as a

bandwidth and I can write down the 3 dB point from the 1/e time and it is

f3dB =
1

2πτ
=

1

πµ0σR∆
(25)
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I can put in the numbers for copper, (see Eq. 2) and put ∆ = 10−3 m and R = 0.2 m to

get f3dB = 21 Hz. This is not good when compared to our magnetic field ramp frequency of

15 Hz.

IV. CONCLUSION

These calculations show that the eddy current on the walls of the tube are not negligible!

In fact, it can be as large as that on the end wall disk if we don’t put in cuts. The reduction

of the B-field that arise from eddy current effects must also be mitigated by cuts.
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